Microplastics Now Pose Even Greater Threat To Land Than Oceans
“In fact, terrestrial microplastic pollution is much higher than marine microplastic pollution” – about four to 23 times more…
More attention continues to be placed on determining any ill effects that microplastics (microbeads) are having on human health and the environment. Previous concerns have been raised in everything from toothpaste to beer to the wider ecosystem where it was found to threaten juvenile fish that were becoming addicted to them.
Moreover, it has been uncovered by an Orb Media investigation that microplastics (plastic nanoparticles) were present in 83 percent of drinking water samples. “The study encompassed more than a dozen countries, including the U.S., the U.K., France, Germany, Lebanon, Indonesia, Equator, and India.” (Source)
SEE:Â Invisible Plastic Nanoparticles Now Being Found In Drinking Water
However, as bad as this appears to be, the contamination from microplastics extends far beyond our water sources. I previously covered a study that showed plastic particles in outlandish concentrations on beaches throughout Europe.
They found that every kilogram of sand on European beaches contained on average 250 fragments of microplastic. In some locations the number can be even higher, a spot in Iceland had 700 microplastics per kilogram, in Italy it was as high as 1,500 per kilogram. Bosker has already found relatively high levels in the Netherlands, with 500 fragments per kilo on the beach near to The Hague. (Source)
While their findings varied, researchers found microplastics in every sample taken from 23 locations in 13 European countries.
Widget not in any sidebars
And, yet, the full magnitude of this problem is still being uncovered. In fact, the latest research is calling the threat to land-based ecosystems “an underestimated threat.” So much so, that it is now believed that the terrestrial impact might be even greater than to oceans and other bodies of water.
Researchers are attempting to look at not only direct adverse effects that can be caused by microplastics, but also the complexities of how they permeate throughout our environment at every level and how their decomposition can trigger ancillary problems as well.
“Although little research has been carried out in this area, the results to date are concerning: Fragments of plastic are present practically all over the world and can trigger many kinds of adverse effects. The previously observed effects of microplastics and nanoplastics on terrestrial ecosystems around the world indicate that these ecosystems may also be in serious jeopardy,” explains IGB researcher Anderson Abel de Souza Machado, who is leading the study. Researchers from IGB have demonstrated in earlier studies that microplastics might be harmful to ecosystems when ingested by aquatic key organisms.
Over 400 million tons of plastic are produced globally each year. It is estimated that one third of all plastic waste ends up in soils or freshwaters. Most of this plastic disintegrates into particles smaller than five millimetres, referred to as microplastics, and breaks down further into nanoparticles, which are less than 0.1 micrometre in size. In fact, terrestrial microplastic pollution is much higher than marine microplastic pollution – an estimate of four to 23 times more, depending on the environment. Sewage, for example, is an important factor in the distribution of microplastics. In fact, 80 to 90 per cent of the particles contained in sewage, such as from garment fibres, persist in the sludge. Sewage sludge is then often applied to fields as fertilizer, meaning that several thousand tons of microplastics end up in the soils each year.
SEE:Â Whole Foods Quietly Agrees To Drop Sewage Sludge Produce
Potentially toxic effect on many organisms
Some microplastics exhibit properties that might have direct damaging effects on ecosystems. For instance, the surfaces of tiny fragments of plastic may carry disease-causing organisms and act as a vector that transmits diseases in the environment. Microplastics can also interact with soil fauna, affecting their health and soil functions. Earthworms, for example, make their burrows differently when microplastics are present in the soil, affecting the earthworm’s fitness and the soil condition.
Generally speaking, when plastic particles break down, they gain new physical and chemical properties, increasing the risk that they will have a toxic effect on organisms. And the more likely it is that toxic effects will occur, the larger the number of potentially affected species and ecological functions. Chemical effects are especially problematic at the decomposition stage, as spotted by the team of authors led by Anderson Abel de Souza Machado. For example, additives such as phthalates and Bisphenol A leach out of plastic particles. These additives are known for their hormonal effects and can potentially disrupt the hormone system not only of vertebrates, but also of several invertebrates. In addition, nano-sized particles may cause inflammation; they may traverse or change cellular barriers, and even cross highly selective membranes such as the blood-brain barrier or the placenta. Within the cell, they can trigger changes in gene expression and biochemical reactions, among other things. The long-term effects of these changes have not yet been sufficiently explored. However, it has already been shown that when passing the blood-brain barrier nanoplastics have a behaviour-changing effect in fish.
These realities are presenting a scenario where exposure to microplastics is almost becoming inescapable. As exposure becomes more prevalent, there is a likelihood that more cumulative effects will be observed.
Plastic particles already detected in many foods
Humans also ingest microplastics via food. They have already been detected not only in fish and seafood, but also in salt, sugar and beer. It could be that the accumulation of plastics in terrestrial organisms is already common everywhere, the researchers speculate, even among those that do not “ingest” their food. For example, tiny fragments of plastic can be accumulated in yeasts and filamentous fungi.
The intake and uptake of small microplastics could turn out to be the new long-term stress factor for the environment. At the moment, however, there is a lack of standardized methods for determining microplastics in terrestrial ecosystems in order to produce an accurate assessment of the situation. It is often a difficult and labour-intensive process to detect tiny fragments of plastic particles in soils, for instance.
The new IGB study highlights the importance of reliable, scientifically based data on degradation behaviour and the effects of microplastics. This data is necessary to be able to respond effectively to contamination by microplastics and the risk they pose to terrestrial ecosystems – where, after all, most plastic waste that enters the environment accumulates.
Full article available HERE.
Jason Erickson writes for NaturalBlaze.com. This article (Microplastics Now Pose Even Greater Threat To Land Than Oceans) may be republished in part or in full with author attribution and source link.
Top image credit: Waking Times